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Contributions
: . . . VGGSound woman Generated Sample Class:
1. Primed with a set of visual features, the transformer samples indices to a codebook transformer speaking woman speaking 0.99
Model for controlled sound generation based on visual cues 2. The indices are replaced with the items from the codebook ook -VGGSound  kid speaking 0.00
" supports multiple data classes | 3. The codebook representation is decoded into the spectrogram
= generates the sound faster that it takes to play it . .
4. The spectrogram is vocoded into a waveform
Perceptual loss for spectrogram-based sound synthesis
= designed for the open-domain spectrogram generation - ¢ Codeb K P traini
= helps VQVAE to reconstruct input from a smaller bottleneck size pecitrogram .oaenoo re-training We are the first to apply VGGSound on sound generation, to the best of our knowledge
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Requirement: strong audio-visual correspondence

VAS

= Human-curated
= ~12.5k <10-second clips
= 8 classes: Dog, Fireworks, Drum, Baby, Gun, Sneeze, Cough, Hammer

VGGSound

= Automatically collected
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Codebook Loss

Reconstruction Loss

PatchGAN Loss

=

LPAPS Loss
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Spectrogram Codebook is trained on spectrograms from the VGGSound dataset using the following loss

Ground Truth
(baby)

VGGSound
codebook

VAS
codebook

= ~190k 10-second clips from YouTube L — |lselE(z)] — 2 2 + Bl E(x) — selz + ||z — 2|| +log D(z) + log(1 — + 25 _ 45
= 300+ classes grouped as: people, sports, nature, home, tools, vehicles, music, etc. “ g[ )] q‘ |2 VﬁH ( g q HZ H H = ( ) g( Z FSTSH ||
codebook loss recons 10ss patch-based adversarial Ioss N _,
LPAPS loss VAS
The Longest and Greatest Generated Drum Solo You've Seen iy . o . o ransformer | dog Generated Sample Class:
Learned Perceptual Audio Patch Similarity (LPAPS) with VGGish-ish VGGSound | _VAS dog barking 0.85
codebook dOg bow-wow 0.15

We train a VGG16 spectrogram classifier on VGGSound (300+ classes), we call it VGGish-ish.
LPAPS is defined a distance in feature space between generated and real spectrograms (see above).

Window-based Spectrogram Vocoder

_ =+ tran\s,%?mer Generated Sample Class:
= Goal Vocoder reconstructs a waveform from a spectrogram VAS hamm‘::nge‘l‘:ﬁ: ggg
d 4+ = Solution 1 The Griffin-Lim algorithm that is fast and can handle open-domain samples codebook '
_‘ = Problem 1 Low quality of reconstruction from mel-spectrograms due to the intermediate algorithm
+ = Solution 2 WaveNet produces high-fidelity samples
- = Problem 2 It is relatively slow (25 mins per 10-second sample on a GPU)
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Solution 3 To train MelGAN from scratch on VGGSound (1 sec per high-quality 10-second sample on a CPU) Comparison to State-of-the-art
+ Evaluating Conditional Sound Generation RegNet supports only one class at once Ground Truth RegNet Ours
while Ours supports all 8 classes. . =k '
+ We train a variant of InceptionV3 on VGGSound dataset from scratch and call it Melception. g
Melception is used in evaluation of Params FID{ MKL{ S
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All models use the same set of visual feats. ~§
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